1.	(i)	(enthalpy change) when 1 mole of compound is formed \checkmark from the constituent elements \checkmark	2	
	(ii)	$6C(s) + 7H_2(g) \rightarrow C_6H_{14}(l)$ correct formulae and balancing \checkmark tate symbols \checkmark	2	
	(iii)	temperature 25°C/ 298K/ a stated temperature (if justifie pressure 1 atm/ 100 kPa/ 101 kPa \checkmark	d) 1	[5]
2.	lines	The formula formula to show the start above that at end of reaction abelled between reactants and products \checkmark	\checkmark	
	E _a lat	belled from reactants to top of energy 'hump' \checkmark		[3]
3.	x - 89	ect Hess' cycle \checkmark 90 = -572 - 394 \checkmark 76 (kJ mol ⁻¹) \checkmark		[3]
4.	(i)	bond breaking is endothermic/ energy has to be put in to break a bond (1)	1	
	(ii)	bonds broken: $3(C-H) + (C-O) + (O-H) + 1.5 (O=O) = 3$ bonds made: $2(C=O) + 4(O-H) = 3470$ kJ (1)	2781 kJ (1)	
		$\Delta H_{\rm c} = -689 \; (\rm kJ \; mol^{-1}) \; (1)$	3	[4]
5.	(a)	(i) (heat/energy change) when 1 mole of substance is from its elements (1)	formed (1) 2	
		(ii) 1 atm/101 kPa and a stated temperature/25 °C/298	K (1) 1	
		(iii) $C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g)$ balanced equation forming 1 mol CO (1) state symbols (1)	2	
		(iv) cycle drawn/sum of ΔH (products) – ΔH (products) -75 – 242 + x = -110 (1)	(1)	
		$\Delta H = (+)207 \text{ kJ mol}^{-1}$ (1)	3	
	(b)	production of margarine/ammonia/Haber process (1)	1	[9]

PMT

[2]

formulae ✓ balancing ✓ ignore state symbols

7. (enthalpy/ energy/ heat change) when 1 mole of substance/ element/ compound 🖌 (NOT absorbed) is completely burnt/ burnt in excess oxygen \checkmark under standard conditions (if conditions stated they must be correct) 🗸 [3] 8. (a) (a reaction) that releases energy/ (a reaction) that releases heat/ a reaction with a negative $\Delta H(1)$ 1 diagram to show (b) (i) upward **hump** (1) $CO_2 + (2)H_2O/$ carbon dioxide and water below reactants (1) 2 (ii) E_a marked (1) if an arrowhead is included, it must be upwards 1 [4] 9. (heat/ energy change) when 1 mole of substance is (a) formed (1) from its elements (1) 2 (b) $C(s) + 2H_2(g) \rightarrow CH_4(g)$ balanced equation (1) state symbols (1) 2 (c) cycle drawn/ sum of enthalpy changes products - sum of enthalpy changes reactants (1) $-75 - 242 + \times = -110(1)$ 3 $\Delta H = 207 (kJ mol^{-1}) (1)$

	(d)	any industrial use, examples include manufacture of ammonia/ for Haber process manufacture of margarine/ hydrogenation of alkenes	1	[8]
10.	(i)	to break a bond energy has to be put in/ \checkmark breaking bonds is endothermic	1	
	(ii)	energy needed to break 1 mole of bonds \checkmark in the substance in the gaseous state \checkmark	2	
	(iii)	bonds broken: $3(C-H) + (C-O) + (O-H) + 1\frac{1}{2}(O=O) = 2781 \text{ kJ } \checkmark$ bonds made: $2(C=O) + 4(O-H) = 3470 \text{ kJ } \checkmark$ $\Delta H_c = -689 \checkmark (\text{kJ mol}^{-1})$	3	
	(iv)	actual bond enthalpies may be different from average values \checkmark		
		conditions are not standard / methanol/ water is a liquid under standard conditions \checkmark	2	[8]
11.	(i)	(enthalpy/ energy change) when 1 mole of substance/compound formed \checkmark from its elements \checkmark under standard conditions \checkmark (if conditions quoted must be correct – 25 C/298 K, 1 atm/100 kPa/101 kPa)	3	
	(ii)	$Mg(s) + N_2(g) + 3O_2(g) \checkmark Mg(NO_3)_2(s)$ balanced species \checkmark state symbols \checkmark	2	
	(iii)	cycle 🗸		
		x - 791 = -602 - 2(33)		
		$\mathbf{x} = 123 \checkmark$	3	[8]

12. (i)reaction carried out at 298K and 1 atm pressure (or other relevant
units) (1)1(ii)enthalpy change when 1 mole (1)
(of substance) is burnt in excess oxygen (1)2(iii) $4CO_2 + 5H_2O$ at lower energy than reagents (1)
 E_a marked correctly (1)
 ΔH marked correctly (1)3

13. (i) $4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$ reagents and products (1) state symbols (1)

(ii)
$$4C + 5H_2 \xrightarrow{x} C_4H_{10}$$

 $4(-394) 5(-286) -2877$
 $4CO_2 5H_2O$
cycle (1)
correct values (1)
answer (1)
 $X - 2877 = 4(-394) + 5(-286)$
 $X = -129 (kJ mol^{-1})$

3

2

[5]

14. (a) (i) bo

i) bonds broken (N - N) + (O == O) + (N - H) = 163 + 497 + 4(390) = 2220 (kJ mol⁻¹) (1)bonds made $(N \equiv N) + 4(OH) = 945 + 4(463) = 2797 (KJ mol⁻¹) (1)$ broken ΔH is +ve and made ΔH is -ve (1) enthalpy of reaction = 577 (KJ mol⁻¹) (1)4

(ii)
$$\frac{577}{32} = 18.0(KJ)(1)$$
 1

(b)	too 1 not 1	bond is weak/ higher Ea for ammonia/ rate too slow for ammonia/ nuch energy to break bonds in ammonia / hydrazine is liquid/ do need pressurised containers/ more moles/ lots of gas produced ydrazine/ more energy per mole produced by hydrazine (1)	1	[6]
(a)	(entl	nalpy change) when 1 mole of substance/ element/ compound (1)		
	NOT	energy needed		
	is co	mpletely burnt (1)	2	
(b)	C ₃ H	$_{7}OH(l) + 4\frac{1}{2}O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(I)$		
	correctly balanced equation (1)			
	state	symbols (species must be correct) (1)	2	
(c)	(i)	$\Box H = mc \Box T (1)$		
		\Box H = 50 × 4.18 × 12.8 = 2675 (J) = 2.68 (kJ) (1) ignore sign	2	
	(ii)	Mr propan-1-ol = 60 (1)		
		number moles = $0.00167(1)$	2	
	(iii)	$\Box \mathbf{H} = \tilde{(1608} (KJ m o \tilde{l}^{-1}) (1)$	1	
	(iv)	heat losses (1)		
		thermal capacity of beaker ignored (1)		
		conditions were non-standard (1)		
		combustion could be incomplete (1)		
		propan-1-ol evaporates (1)		
		water evaporates (1)	2	[11]
(i)		enthalpy change when <u>1 mole</u> of compound/species/substance is formed \checkmark		
	Imer	ntion of 1 mole of <i>elements</i> negates this mark]		

15.

16.

	[]		
	from its <u>elements</u> [NOT atoms/ions] (under standard conditions) \checkmark	2	
(ii)	25°C/298K and 1 atmos/1 × 10^5 Pa \checkmark	1	
			[3]

 $Pb(s) + \frac{1}{2}O_2(g) \rightarrow PbO(s)$ (balancing for 1 mol of PbO) \checkmark 17. ✓u/c (state symbols) [2]

		(correc	et signs			√)	
		(correc	et calculat	ion of w	value	√)	3
	some possible ecf values:	+67					2
		-501					2
		+501					1
		-1369					2
		+1369					1
(ii)	$\Delta H^{\Theta}_{f} = -718 + 10 + 2(217)$						
	= - 274 (kJ mol ⁻¹) (use of correct data & multiplie				√)		
		(correct signs				√)	
		(correct calculation of value			value	√)	3
	some possible ecf values: -57	[2]					
	-284	[2]	-294	[2]			
	+424	[1]	+444	[2]	-491 [2]		
	-511	[1]	-708	[1]	-1142 [2]		
	for others work through the co	1_{0} [1] for	anah arre				

for others, work through the calc: -[1] for each error.

 $=-67 \text{ (kJ mol}^{-1})$ (use of correct data & multiplier

19. I-I(g) \rightarrow 2I(g) (state symbols \checkmark) (1 mole $I_2 \checkmark$)

(i) $\Delta H_{f}^{\Theta} = -718 - 3(-217)$

18.

[2]

[6]

20. No mark scheme available

PMT

21. No mark scheme available

22. No mark scheme available

23. (i) $1652/4 = 413 \text{ (kJ mol}^{-1}) \checkmark$ 1

(ii) $(C\Box C) + 6 (C\Box H) = 2825 \checkmark$ $(C\Box C) = 2825 - 6(413) = 347 (kJ mol^{-1}) \checkmark$ 2 [3]